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In this paper, a methodology based on characteristic spectral bands of near infrared spectroscopy
(1000–2500 nm) and multivariate analysis was proposed to identify camellia oil adulteration with
vegetable oils. Sun°ower, peanut and corn oils were selected to conduct the test. Pure camellia oil
and that adulterated with varying concentrations (1–10% with the gradient of 1%, 10–40% with
the gradient of 5%, 40–100% with the gradient of 10%) of each type of the three vegetable oils
were prepared, respectively. For each type of adulterated oil, full-spectrum partial least squares
partial least squares (PLS) models and synergy interval partial least squares (SI-PLS) models
were developed. Parameters of these models were optimized simultaneously by cross-validation.
The SI-PLS models were proved to be better than the full-spectrum PLS models. In SI-PLS
models, the correlation coe±cients of predition set (Rp) were 0.9992, 0.9998 and 0.9999 for
adulteration with sun°ower oil, peanut oil and corn oil seperately; the corresponding root mean
square errors of prediction set (RMSEP) were 1.23, 0.66 and 0.37. Furthermore, a new generic
PLS model was built based on the characteristic spectral regions selected from the intervals of the
three SI-PLS models to identify the oil adulterants, regardless of the adultrated oil types. The
model achieved with Rp¼ 0.9988 and RMSEP ¼ 1.52. These results indicated that the charac-
teristic near infrared spectral regions could determine the level of adulteration in the camellia oil.

Keywords: Camellia oil; adulteration detection; characteristic near infrared spectral regions;
partial least squares; synergy interval partial least squares.
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1. Introduction

Camellia oil is extracted from the seed of camellia
(Camellia oleifera Abel) which is one of the four
major woody oil plants in the world.1 The oil was
mainly produced in southern China and southeast
Asia. Camellia oil is titled as \eastern olive oil",
with the similarity to olive oil in physicochemical
properties and acid pro¯les.2 According to some
reports, camellia oil could help to meliorate gastric
mucosal injury, lower blood pressure and prevent
heart disease.3,4 As a result of the higher nutritional
and medical values, the demand for camellia oil is
increasing and it is generally 3–5 times more ex-
pensive than other edible oil in China.5 Therefore,
adulterating them with other cheaper oils could be
very lucrative. Once adulterated, its unique quality
and nutritional characteristics will be destroyed,6

and this will de¯nitely damage the interests of
consumers. The camellia oil annual yield in China is
approximately 300,000 tons and increasing.7 Thus,
monitoring the authenticity will help to standardize
market order and protect consumers' rights.

To guarantee camellia oil quality, some qualita-
tive chemical detection methods are used. The
adulterated oil can be qualitatively identifuied by
the discolouration, crystallization or opacitas e®ects
after some reagents being added to.8 However,
considering the diversi¯cation of the adulterants, it
is very di±cult to detect the possible adulterants
one by one. Quantitative detection methods, i.e.,
gas chromatography (GC) and liquid chromatog-
raphy (LC), can determine the content of speci¯c
constituents in adulterated camellia oil accurately.9,10

These detection methods are time consuming, compli-
cated and traditionally require toxic chemical reagents
to preprocess samples. Thus, seeking a real-time and
nondestructive identi¯cation technique to detect
adulteration is important.

Near-infrared (NIR) spectroscopy technology
comprises of weak and broad overtones and com-
bination bands of fundamental vibrational transi-
tions associated mainly with many functional
groups. Thus, it can be used to discriminate sets of
similar biological materials.11 Since it has rapid,
nondestructive, pollution free and low request of
environmental control features, it is widely used in
quality detection of edible oils and fats.12–15

For detecting adulterated camellia oil by NIR
spectroscopy, the adulterated samples were normally
prepared by mixing pure oil with some cheaper edible

oil manually. Chemometrics methods can highlight
the slight di®erences both in the position and absor-
bance of the bands of di®erent kinds of oils.16 Li
et al.17 used NIR spectroscopy (1000–2500nm) with
four pattern recognition methods to authenticate pure
crude and commercial camellia oil. Each of the four
chemometrics method could achieve a classi¯cation
rate with 98.3% or higher. Hussain et al.18 built a
model that could identify the adulterated camellia oil
with an accuracy of 100% by NIR spectra with PLS
method. The NIR spectra were obtaind by dipping
a ¯ber into the samples prepared through adding
soybean oil into camellia oil with the mass percentage
of 5–25%. Yuan et al.6 explored the feasibility of NIR
transmittance spectroscopy for the rapid determina-
tion of soybean oil and maize oil adulterated in binary
and ternary system camellia oils. The results showed
that this technology could be able to classify camellia
oil, soybean oil, maize oil, and adulterated oil with
discriminant equations patterntechniques at 95%
con¯dence level. These good performances displayed
that NIR spectroscopy could be successfully used as a
rapid, simple, and nondestructive method to dis-
criminate pure camellia oil. However, due to it was
local specialty, few reports about the detection of
camellia oil adulteration by NIR were found. Some
adulteration detection for olive oil could be treated as
references,19–21 as the similarities of camellia oil with
olive oil in physical and chemical constants.

The researches about the identi¯cation of adul-
terated camellia oil by NIR spectroscopy technology
were mainly based on the full spectral region. Al-
though the results were satis¯ed, those models al-
ways lead to complex calculations as they contained
a large number of variables. Many studies have
shown that simpler and more accurate calibration
models may be achieved by selecting the most in-
formative spectral variables instead of using the full
spectrum, as the e®ect of unwanted spectral regions
that are unrelated to oil properties could be elimi-
nated.22 In application, using the characteristic
spectral variables can simplify the design of detec-
tion instrument. In recent years, many researchers
selected appropriate variables and constructed
analysis models to quantify compositions content in
oils. Pereira et al.23 used only one spectral region to
determine quality parameters in vegetable oils.
Yang et al.24 adopted variables selection algorithms
to measure acid value (AV) in peanut oils. Moreira
et al.25 investigated a variable combination method
to monitor twelve physical and chemical parameters
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of vegetable oils. These results shown that it was
possible to determine the quality of oils with a low
number of selected wavelengths. However, there
were few researches about ¯nding informative
spectral variables to detect adulterated camellia oil.

Thus, the main goal of this paper was to identify
camellia oil adulteration with selected vegetable oils
by a low number of characteristic near infrared
spectral variables. To achieve this goal, the speci¯c
objectives were (i) to determine the amount of each
kind of adulterants in camellia oil by full spectra;
(ii) to ¯nd some characteristic spectral regions to
detect each type of adulteration in camellia oil
separately; (iii) to build a simpli¯ed and generic
adulterant identi¯cation model by the selected
characteristic regions, which could quantitatively
detect adulterations in camellia oil regardless of the
adultrant oil types.

2. Materials and Methods

2.1. Sample preparation

Sun°ower oil, peanut oil and corn oil were widely
used edible vegetable oils in China, and they were
often used as adulterants in camellia oil because
they were cheap and easily got. Thus, these three
kinds of vegetable oils were chosen in this study.
From the view of common brand and their sales, we
just chosed one type of each oil and purchased from
the local market. The adulteranted oils were pre-
pared by manually mixing camellia oil with each
type of the vegetable oils with di®erent volume
proportions (1-100%V/V) respectively, from 1% to
10% V/V in 1% V/V steps, from 10% to 40% V/V
in 5% V/V steps and from 40% to 100% V/V in 10%
V/V steps (a total of 22 volume proportion for each
type of the cheaper vegetable oil). The blended oil
injected into a quartz cells (10� 10� 45mm) to the
hight of 30mm was taken as a sample. For each
volume proportion, 9 samples were prepared. In
total, 9 samples of pure camellia oil and 594 samples
(198 samples for each of the three cheaper vegetable
oil) of adulteranted camellia oils were ready, and
the sample variance was 927.93 for each type of the
adulterants.

2.2. Spectra acquisition

NIR spectra were collected by a near-infrared spectro-
photometer (AvaSpec-NIR256, AVANTES, Apeldoom,

Holland) along with its supporting software (Ava-Soft
7.0, AVANTES, Apeldoom, Holland). In this work,
the FT-NIR spectrometer covered the NIR spectral
region from 940 nm to 2574 nm with a resolution
of 6.4 nm and it was calibrated by the reference
information acquired from whiteboard and dark
current. The oil samples were put on a custom-made
quartz cell holder, and their absorption spectra were
subsequently collected by averaging 100 scans with
an integration time of 0.0319ms.

The raw spectra of all the pure and adulterated
camellia oil samples were shown in Fig. 1. For the
raw spectra, only the spectra ranging from 1000 nm
to 2300 nm were reserved. The wavelengths in-
cluding 940 nm to 998 nm and 2294 nm to 2574 nm
were de¯ned as noisy spectral regions due to the less
sensitivity of the spectrometer. As shown in Fig. 1,
there are four characteristic absorbance bands on
the curves. In the NIR region (between 750 nm and
2500 nm), vibration and combination overtones of
the fundamental O–H, C–H, S–H and N–H struc-
tures are the main recordable phenomena.11 Based
on previous studies, band 1 ranging from 1111 nm to
1265 nm is related to the second overtone of C–H
stretching vibrations of methyl and methylene
groups; band 2 ranging from 1342 nm to 1492 nm is
related to the C–H stretching vibrations; band 3
ranging from 1639 nm to 1887 nm is associated with
the ¯rst over tone of CH2 stretching vibrations of
methyl and methylene groups; and band 4 locating
between 2083 nm and 2222 nm is associated with C–
H stretching vibration with other vibrational
modes.26 For di®erent samples, the entire spectra
looked closely similar both on the spectral pattern
and the absorbance values. Chemometrics methods
were utilized to highlight the small discrepancies
of chemical composition between pure camellia

Fig. 1. Original spectra of the pure and adulterated camellia
oil samples.
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oil and those adulterated with other cheaper vege-
table oils.

2.3. Primary chemometrics methods

In this work, chemometric methods were performed
with MATLAB 2013b Software (MathWorks,
Natick, United states). NIR spectroscopy, which
contains hundreds or thousands of wavelengths, is
based on molecular overtone and combinations of
stretchings and vibrations. Thus it is di±cult to
assign any special features to some speci¯c chemical
components. The complexity of NIR spectra
prompts the need for multivariate analysis.27 Par-
tial least square regression (PLS) is one of the most
used regression techniques for multivariate analysis,
and it allows a sophisticated statistical approach
that is feasible for ordinary multiple regression.28,29

Synergy interval PLS (SI-PLS) is an expansion of
the PLS, it spilts the full spectra into a number
of intervals and operates PLS algorithm on the
selected spectral region.30 This method can help to
remove some useless information to make the cali-
bration developments more convenient. In this study,
PLS and SI-PLS were selected as identi¯cation
models establishment methods. The performance of
these models were evaluated by the following statis-
tical indexes: the root mean square error of cross-
validation (RMSECV), the root mean square error of
prediction (RMSEP) and the correlation coe±cient
(R) of calibration (Rc) and prediction set (Rp).31

2.3.1. Partial least squares regression

PLS aimed at ¯nding a mathematical relationship
between full spectrum information of samples and
the adulteration level of samples in this paper.32 In
PLS, both predictors (matrix X) and responses
(matrix Y) were transferred into a set of indepen-
dent factors (latent variables, LVs) which could
describe the maximum covariance between spectral
information and response variables. The optimal
number of LVs used in the establishment of PLS
model was determined by cross-validation.33

2.3.2. Synergy interval PLS regression

In order to remove useless information and simplify
calculation, synergy interval PLS (SI-PLS) was
used to select e®ective spectral intervals data to
calibrate PLS model. The principle of this algorithm

is to split the spectra into a series of smaller equi-
distant regions and develop all possible PLS models
in all possible combinations of two, three or four
intervals. The combination of the intervals and
the number of LVs were also chosen by the cross-
validation.34,35

3. Results and Discussion

3.1. Identi¯cation models for single oil
adulteration type

3.1.1. Full-spectrum PLS models

The spectral data ranging from 1000–2300 nm were
used to bulid identi¯cation model. Before calibra-
tion, the spectral data usually need to be pre-
processed to reduce some unwanted information,
such as shifts in baseline, non-linearities and ran-
dom noise.36 In this work, standard normal variate
(SNV), savitzky–golay smoothing (SG), and ¯rst
and second derivative were used respectively. In
each type of oil adulterants, the samples were ran-
domly divided into calibration and prediction set
with a 2:1 division. The calibration set was used to
build the identi¯cation model for each kind of
adulteration, and prediction set was used to verify
the predictive ability of the model. The PLS models
based on raw spectral data and preprocessed spec-
tra were built respectively, and their results, e.g.,
Rc, RMSECV, Rp and RMSEP were listed in
Table 1.

The results in Table 1 indicated that it could be
feasible to identify the level of adulterations in ca-
mellia oil by the full-spectrum PLS model. Consid-
ering the similarities of the PLS model results
between raw spectra and corrected spectra, it was
unnecessary to adopt any pretreatment method. So
the raw spectra data were selected in the subse-
quent analysis. For the three types of oil adultera-
tion, Rc and Rp are all over 0.99; and both
RMSECV and RMSEP are around 1% V/V. The
results of the three models also show a good pre-
dictive ability. It indicated that NIR spectroscopy
coupled with PLS method has a good ability to
detect adulteration content.

3.1.2. SI-PLS models

Although the PLS models gave good results, these
models were based on full spectra which included
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uninformative regions. To reduce calculation and
improve the performance of the PLS model, it was
necessary to optimize the selection of spectral.37 For
each kind of the adulterants, SI-PLS was adopted
for the establishment of a new detection model. The
calibration and prediction sets for SI-PLS modeling
were also randomly divided with a 2:1 division.
During calibrating of SI-PLS models, three para-
meters, namely, the number of subintervals divi-
sion, the combination of subintervals, and the
number of LVs of SI-PLS model could all in°uence
the performance of SI-PLS.38 The full spectra were
equally-divided into 6, 7, 8; . . . ;17 subintervals.
Total 12 subintervals division cases were got. In
each case, SI-PLS model was developed based on
two, three or four subintervals and di®erent number
of LVs, respectively. These two parameters were
determined according to the lowest RMSECV. The
optimum model was determined by trading o® Rc,
Rp, RMSECV, and RMSEP. The optimum model
for each case was summarized in Table 2, and the
optimum models for each adulteration were promi-
nent with the bold black font.

For the sun°ower oil adulteration type, the op-
timum SI-PLS model was obtained with the com-
bination of 4 intervals from 11 intervals and 8 LVs.
The combinations of intervals selected were [4 6 8
9], which corresponded to the four spectral ranges,
i.e., 1374.0–1484.4 nm, 1607.7–1717.9 nm, 1.840.7–
1950.2 nm, 1956.6–2065.5 nm. Figure 2(a) shows all
the divided intervals and the combinations of

selected subintervals. The spectral intervals con-
taining the second characteristic band in the origi-
nal spectra which corresponded to methyl and
methylene groups as mentioned before. The values
of RMSECV, Rc, RMSEP and Rp were 1.02,
0.9995, 1.23 and 0.9992, respectively.

As shown in Table 2, the optimum SI-PLS model
for detecting camellia oil adulterated with peanut
oil was established by the combination of 4 intervals
from 10 intervals and the 13 LVs. All the intervals
were shown in Fig. 2(b), and the optimum combi-
nations of subintervals were [2 5 7 8] which were
marked in gray shadow. These subintervals corre-
sponded to the spectral sections of 1140.5–
1263.7 nm, 1529.8–1653.1 nm, 1789.0–1911.6 nm
and 1918.0–2039.9 nm. The subintervals contained
the ¯rst characteristic band in the original spectra.
The values of RMSECV, Rc, RMSEP and Rp were
0.53, 0.9999, 0.66 and 0.9998.

Table 2 showed the optimum SI-PLS identi¯ca-
tion model for camellia oil adulterated with corn oil.
The optimal number of LVs was 15. The optimum
spectral subintervals were [2 6 8], which ranged
from 1140.5–1263.7 nm, 1659.6–1782.6 nm, and
1918.0–2039.9 nm. Figure 2(c) showed all the
divided 10 intervals and the three optimum spectral
subintervals for the SI-PLS model. Those spectral
intervals involved the ¯rst and third characteristic
bands in the original spectra. Among them, the ¯rst
characteristic band was the same as the ¯rst sub-
intervals selected by peanut identi¯cation model.

Table 1. Results of PLS models built by raw and pretreated spectra spectra.

Calibration set Prediction set

Adulteration type Prepressing method The number of LVs Rc RMSECV Rp RMSEP

Sun°ower oil Original spectra 11 0.9993 1.2 0.9990 1.27
SNV 7 0.9991 1.3 0.9987 1.47

S G smooth 8 0.9993 1.2 0.9990 1.29
The ¯rst dervative 6 0.9993 1.15 0.9991 1.24

The second dervative 7 0.9993 1.16 0.9991 1.25

Peanut oil Original spectra 12 0.9995 0.91 0.9995 1.10
SNV 13 0.9996 0.82 0.9996 1.01

S G smooth 13 0.9997 0.7 0.9996 0.93
The ¯rst dervative 9 0.9997 0.69 0.9997 0.91

The second dervative 8 0.9999 0.73 0.9996 0.97

Corn oil Original spectra 11 0.9999 0.47 0.9999 0.52
SNV 12 0.9999 0.46 0.9998 0.52

S G smooth 9 0.9999 0.47 0.9999 0.52
The ¯rst dervative 6 0.9999 0.45 0.9999 0.5

The second dervative 10 0.9999 0.37 0.9999 0.41

Identifying camellia oil adulteration with selected vegetable oils
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Table 2 also displayed that the results for identi-
fying corn oil in camellia oil were Rc ¼ 0.9999 and
RMSECV ¼ 0.36 in calibration set, and Rp ¼
0.9999 and RMSEP ¼ 0.37 in prediction set.

In general, the correlation coe±cients (R) of the
SI-PLS models for each adulteration type were all
over 0.9992, and the corresponding root mean
square errors were all around 1% V/V. The
RMSECV and Rc were all close to the correspond-
ing RMSEP and Rp, respectively. These results
indicated that the SI-PLS models were stable and
robust. In contrast with PLS, SI-PLS showed its
superiority in detecting the three kinds of vegetable

oils in camellia oil, respectively. All the three
SI-PLS models had higher correlation coe±cient (R)
and lower RMSECV and RMSEP comparing to
those in the full-spectrum PLS models. The situa-
tion could be explained by the following reasons.
The PLS models were obtained from full-spectral
region which contained many collinear or irrelevant
variables. These variables would weaken the per-
formance of PLS model inevitably. While, SI-PLS
models searched all possible subinterval combina-
tion ¯rstly and then reasonably selects several
spectral subintervals.39 By removing those redun-
dant variables and retaining interesting information

Table 2. Results of SI-PLS models in each case.

Calibration set Prediction set

Adulteration type The number of intervals Selected intervals The number of LVs Rc RMSECV Rp RMSEP

Sun°ower oil 6 [2 3 5] 9 0.9994 1.13 0.9991 1.17
7 [2 3 4 6] 12 0.9994 1.04 0.9990 1.32
8 [3 4 6 7] 9 0.9994 1.06 0.9992 1.13
9 [2 5 7] 10 0.9994 1.08 0.9991 1.23
10 [5 7 8] 6 0.9994 1.1 0.9989 1.47
11 [4 6 8 9] 8 0.9995 1.02 0.9992 1.23
12 [3 5 6 9] 7 0.9994 1.07 0.9991 1.24
13 [7 9 11] 8 0.9994 1.05 0.9992 1.15
14 [4 7 10 12] 8 0.9995 1.03 0.9991 1.22
15 [10 11 13] 6 0.9994 1.08 0.9993 1.13
16 [6 8 11 14] 8 0.9995 1.03 0.9989 1.43
17 [8 9 12 14] 6 0.9995 1.02 0.9990 1.26

Peanut oil 6 [1 2 3] 9 0.9998 0.56 0.9998 0.75
7 [1 2] 6 0.9997 0.81 0.9996 1.61
8 [1 2 3 4] 10 0.9998 0.58 0.9998 0.73
9 [1 2 5 8] 11 0.9998 0.63 0.9998 0.58
10 [2 5 7 8] 13 0.9999 0.53 0.9998 0.66
11 [2 5] 10 0.9997 0.76 0.9996 1.01
12 [2 4 5 6] 12 0.9998 0.54 0.9998 0.80
13 [2 5 7 11] 13 0.9998 0.58 0.9998 0.75
14 [2 3 5 7] 12 0.9998 0.58 0.9997 0.82
15 [2 3 10] 7 0.9997 0.69 0.9997 0.86
16 [3 8] 13 0.9995 0.96 0.9995 0.99
17 [2 3 11] 7 0.9998 0.68 0.9997 0.88

Corn oil 6 [1 3 4] 14 0.9999 0.34 0.9999 0.38
7 [1 2 4] 14 0.9999 0.34 0.9999 0.49
8 [1 2 4 5] 15 0.9999 0.34 0.9999 0.41
9 [2 4 5 8] 15 0.9999 0.3 0.9999 0.80
10 [2 6 8] 15 0.9999 0.36 0.9999 0.37
11 [2 7 10] 13 0.9999 0.35 0.9999 0.45
12 [2 7] 10 0.9999 0.44 0.9999 0.47
13 [2 8 12] 11 0.9999 0.34 0.9999 0.45
14 [2 7 9 12] 15 0.9999 0.33 0.9999 0.43
15 [2 3 9 13] 11 0.9999 0.36 0.9999 0.39
16 [2 3 9 14] 15 0.9999 0.34 0.9999 0.50
17 [3 5 10 15] 15 0.9999 0.34 0.9999 0.46
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as much as possible, SI-PLS models could achieve
better performance than full-spectrum PLS models.37

The corresponding functional groups of the spectral
ranges further explained why SI-PLS models had a
better performance.

In this study, one spectral region was selected as
public region if this region was used in at least two
SI-PLS models. The analysis about subintervals
implied that there were 3 public regions, which
corresponded to the following band ranges, i.e.,
1140.5–1263.7 nm, 1607.7–1717.9 nm, and 1840.7–
2039.9 nm. The position of the public regions on the
original spectra was shown in Fig. 3. The public
regions of spectral ranges were also corresponded to
some vibrations of chemical bonds in the charac-
teristic matters of di®erent kinds of vegetable oils.
The ¯rst public region (1140.5–1263.7 nm) con-
tained the region of 1111–1265 nm which was at-
tributed to second overtone of C–H stretching
vibrations in methyl and methylene groups.40 The
¯rst and second public regions were both in the re-
gion of 1075–1639 nm which was related to the sec-
ond overtone of C–H stretching in monounsaturated

fatty acids and polyunsaturated fatty acids.41 In the
third public region, it included the spectra region of
1955–2035nm which is associated with phenolic
compounds.42 And it crossed with the region
of 1990–2175nm which was related to the C–C and
C–H stretch combination tones of unsaturated fatty
acids.41 Thus, these public regions were mainly re-
lated to unsaturated fatty acids and phenolic that
were the main di®erences between camellia oil and
other cheaper vegetable oils. Therefore, it was

Fig. 3. The position of the public regions on the original spectra.

(a) (b)

(c)

Fig. 2. The intervals used for the three SI-PLS models: (a) the intervals used for sun°ower oil identi¯cation model, (b) the intervals
used for peanut oil identi¯cation model, and (c) the intervals used for corn oil identi¯cation model.
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inferred that those public regions played an impor-
tant role in molding for each adulteration detection.

3.2. Generic PLS model by optimum
characteristic spectral regions

There were good results for identifying each type of
adulterantion by using characteristic spectral
regions. Public regions were then selected from the

characteristics spectral regions respectively used in
detecting camellia oil adulterated with sun°ower,
peanut and corn oil. Those public regions were se-
lected as optimum characteristic spectral regions to
built a new generic adulterant identi¯cation model
which could quantitatively detect adulterations in
camellia oil regardless of the adultrated oil types.
All the 603 samples containing pure camellia oil and
adulterated camellia oil were randomly divided into

(a) (b)

(c) (d)

Fig. 4. The scatter plot of the generic PLS model: (a) scatter plot of calibration set, (b) scatter plot of prediction set, (c)scatter plot
of independent valiation set, and (d) scatter plot of adulterated camellia oil samples with volume proportions ranged from 0 to
10%V/V in independent validation set.
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calibration, prediction and independent validation
set with a 3:1:1 division. For each set, they all
contained the adulteranted samples in di®erent
volume proportions. The optimal number of LVs
was 16 which was selected by cross-validation dur-
ing the establishment of the model. The identi¯ca-
tion results of the generic PLS model were shown in
scatter plots (Fig. 4).

As the spectral regions were reduced in the ge-
neric PLS model, the number of LVs in generic PLS
model was larger than those in full-spectrum PLS
models and SI-PLS models. The scatter plots show
that the correlation between actural adulteration
level and NIR prediction in the calibration and
prediction sets. Here, the value of RMSECV is 1.48,
and Rc is 0.9989. In prediciton set, the value of
RMSEP is 1.52 and Rp is 0.9988. Relative percent
deviation (RPD) was further used to evaluate the
model. RPD was introduced as the ratio between
the standard deviation of the reference data of the
prediction set and the standard error of the pre-
diction set. When the RPD was over 8.1, the
model was an excellent calibration. In this study,
RPD was 20.1, which indicated that the model
was essentially quantitative.43 The performance
of this model was also evaluated by the samples in
the independent validation set. The value of the
root mean square error of for independent vali-
dation (RMSEIV) is 1.69, and correlation coe±-
cient for independent validation set (Riv) is
0.9981. All the parameters indicate the stability of
the model.

Compared with those in SI-PLS models, the
correlation coe±cient was reduced and the root
mean square errors was increased in the generic PLS
model. This may be caused by the reduction of the
spectral variables and the increase of adulterants
types. However, compared to SI-PLS models which
can identify only one type of adulterants, the
generic PLS model can identify the amount of
adulterants regardless of their types. As shown in
Fig. 4(d), when the adulteration content was
1%V/V, some of the adulteranted camellia oil
samples were misjudged as pure camellia oil. It
indicated that the detection precisions of adulteration
in camellia oil could be as low as 2% V/V. And in real
life, in order to pursue more pro¯t, the adulteration
level certainly exceeds 2%. Thus, this generic PLS
model could be possibly used to detect the content
of adulteration in camellia oil.

4. Conclusion

In this study, a method based on characteristic
near-infrared spectral regions and multivariate
analysis was proposed to identify camellia oil adul-
teration with three kinds of vegetable oils. The full-
spectrum PLS models and SI-PLS models were built
for each type of adulterated oil respectively. And a
generic PLS model based on the optimum charac-
teristic spectral regions selected by the results of
SI-PLS models was further developed, which can
detect the content of adulteration in camellia oil
regardless of the adulterants type. Following are
the conclusions drawn from this study:

(1) Both full near infrared spectral region and
characteristic spectral regions could be used to
identify the camellia oil adulterated with sun-
°ower, peanut and corn oil. The performance of
the identi¯cation modles built by SI-PLS is
superiority in contrast with PLS models built
by full spectral region. In SI-PLS model, the
correlation coe±cient of predition set (Rp) were
0.9992, 0.9998 and 0.9999 for adulteration with
sun°ower oil, peanut oil and corn oil seperately;
the corresponding root mean square error of
prediction set (RMSEP) were 1.23, 0.66 and
0.37.

(2) The optimized characteristic spectral regions
(1140.5–1263.7nm, 1607.7–1717.9 nm, and
1840.7–2039.9 nm) were selected from the public
regions of the three SI-PLS models. They were
associated unsaturated fatty acids, which rep-
resent the di®erence of camellia oil and other
cheap vegetable oil.

(3) The generic PLS model built by the optimized
characteristic spectral regions could identify
the adulterants in camellia oil regardless of the
types of adulterants. The results reached Rp ¼
0.9988 and RMSEP ¼ 1.52 in prediction set and
Riv ¼ 0.9981 RMSEIV ¼ 1.69 in independent
validation set.

It should be stressed that this study has only in-
volved a limited kind of camellia oils and cheap
vegetable oil. In order to improve the applicability
of the model, detection of camellia oil adulterated
with di®erent brand and production batch of sun-
°ower oil, peanut oil and corn oil should be carried
out gradually, and other kind of cheap vegetable
should also be taken as adulterants in the further
study.
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